
Machine Learning and Deep Learning:
Incremental Learning Project

Filippo Barba (277898), Francesco Guardamagna (277388), Matteo Villosio (276054)
Politecnico di Torino

{filippo.barba, francesco.guardamagna, matteo.villosio}@studenti.polito.it

Abstract

Learning is, by definition, incremental. It is then quite
natural for machine learners to aim at having systems that
can extend their knowledge over time: in the age of IoT and
social media, the ability to learn from continuous streams
of data would not only make us one step closer to natural
learning but would also bring a performance increment. In
this paper we follow the various steps that brought to the
current state of the art, iCaRL, and we then try to propose
some new original ideas.

1. Introduction
Learning is, in nature, incremental: at school children

build their knowledge on top of previously learnt concepts,
animals do not forget an old predator when a new one
appears. Given the widespread presence of continuous
streams of data in modern industry and the capillary deploy-
ment of learning systems with limited power, the ability to
learn in a continuous way would be greatly beneficial for
present Machine Learning methods.
In this paper we followed multiple steps:

• At first, we proceeded by computing a baseline, that is,
we checked the effects of catastrophic forgetting: such
thing was achieved by training the network on a batch
of 10 classes.

• Similarly, we computed a benchmark by using the
Joint Training strategy, that is, by retraining the net
at each step with all the data available up to this point.

• We then implemented the Learning Without Forget-
ting[3] method, the first academic step for Incremental
learning. With this basic yet quite interesting strategy
we saw the first improvement with respect to catas-
trophic forgetting.

• We then proceeded with the implementation of
iCaRL[4], a famous strategy for Incremental Classi-
fication and Representation Learning.

• Finally, we proposed some variations to the standard
iCaRL implementation that could be beneficial in
some particular cases.

1.1. Properties of an Incremental learning algo-
rithm

As suggested in the iCaRL paper, a class incremental
algorithm should respect three properties[4]:

• it should be trainable from a stream of data in which
examples of different classes occur at different times;

• it should at any time provide a competitive multi-class
classifier for the classes observed until then;

• its computational requirements and memory footprint
should remain bounded, or at least grow very slowly,
with respect to the number of classes seen up to that
point;

2. Other methods
2.1. Finetuning

Finetuning is the simplest method: it does not take ad-
vantage of any strategy to avoid catastrophic forgetting but
it simply consists in training our network by finetuning on
the new data we receive. Obviously, this method performs
rather poorly when introducing a lot of new data incremen-
tally, as it only focuses on classifying new data.

2.2. Learning without Forgetting

Learning without Forgetting is a knowledge preservation
method which tries to prevent catastrophic forgetting of pre-
viously learnt data by introducing Knowledge Distillation.
Differently from the Finetuning approach, which does not
take any measure to prevent catastrophic forgetting and its
solely based on finetuning the network on new data, LwF
adds a distillation component to the learning process, allow-
ing the conservation of information learnt during previous

1



Figure 1. Confusion matrix of the finetuning method

iterations.
When new data is presented to the neural network, the
LwF strategy first, if present, makes a prediction on the net
trained at the previous step and then uses this information to
add a distillation factor to the loss computation when train-
ing on new data. We do not keep any sample of the old
data, and we only preserve knowledge of previously seen
classes by including the contribution of the ”old” network
to the loss used in the training of new data, in the form of
distillation loss.
It obviously performs considerably better than the Finetun-
ing method, since previous knowledge is preserved in some
way, but it still presents some room for improvement [fig:2].

Figure 2. Accuracy trend of the LwF vs Catastrophic Forgetting

Figure 3. Confusion matrix of Learning without Forgetting method

3. iCaRL

3.1. Introduction

iCaRL’s goal is to incrementally classify data produced
by a stream: data presented at every step are sampled from
new classes and consequently, on one hand, the model
should evolve in order to learn how to correctly classify the
new data while, on the other, it should not forget previous
classes. Moreover, when new classes are fed we don’t have
all the data associated with the previous classes but only a
subset of that data 1 which will be referred to as exemplars
from now on.

3.2. Our implementation

As a first step, we focused on implementing the iCaRL
paper model in PyTorch. iCaRL uses a convolutional
neural network for feature extraction with a single classi-
fication Linear layer. To further generalize our problem,
the output nodes are incremented each time new data is
presented to the network.
A ResNet32 is used as backbone architecture for the
implementation of iCaRL: such convolutional neural
network became famous and widely used for its ability to
overcome the issue of the vanishing gradient; thanks to the
idea of shortcuts, connections that skip some layers, it was
in fact possible to implement networks of extreme depth.
As loss function we use PyTorch’s
torch.nn.BCEWithLogitsLoss both for classifica-
tion and distillation.
Concerning exemplars, we strictly follow iCaRL’s

1so we have also to understand how to select the most representative
samples of all the classes observed so far

2



strategy.

3.3. Training

iCaRL processes data from a stream, and every time data
from new classes is available, the model is updated; conse-
quently the exemplar set, containing samples of the classes
observed until that point, has to be updated. The update rou-
tine, to improve the feature representation every time new
classes appear, consists of three main steps:

• At first, we create an augmented training set, consist-
ing of images of the new classes and of the exemplars
of the previous classes, if present.

• After the creation of the new augmented training set,
the network outputs for all the previous classes on the
current network (which has not been trained for the
new classes yet) are stored, using all the samples of
the new training set.

• Finally, the network parameters are updated in order
to minimize a loss function, consisting of two contri-
butions. For each new image we want to predict the
right label for the new classes (classification loss) and
we also want to reproduce the scores stored during the
previous step for the old classes (distillation loss). The
distillation loss is a regularization term that prevents
the loss, during the new learning step, of the informa-
tion learnt previously.

3.4. Exemplar sets

As explained in the previous paragraph, every time we
encounter new classes we have to update the exemplar sets.
If t classes have been already encountered and the maxi-
mum number of total exemplar that can be stored is K, we
have to generate one exemplar set for each class with a num-
ber of exemplars m = K

t . We follow iCaRL’s strategy
for selecting and reducing the exemplars for each class. To
create a new exemplar set, the exemplars are selected itera-
tively from the training samples of a new class. When gen-
erating the exemplar set for a class, we extract features from
the class images using the convolutional network trained
until that point. We select the exemplar which, added to
the average feature vector of the already selected exem-
plars, best approximates the class’ average feature vector;
this procedure is executed until the target number of exem-
plarsm is reached. In this way we can generate an exemplar
set as a prioritized list. When introducing new classes we
decrease the number of exemplars by dropping the last ex-
emplars per class 2, in order to keep the total number of
exemplars fixed to K. Since the exemplars are saved as
prioritized lists, we only keep the ones which best describe
each class.

2i.e. exemplars further from the class mean

3.5. Classification

For the classification step iCaRL uses a nearest mean
of exemplars approach. To predict a label for an image
we first have to compute a vector, containing for each class
observed so far the average feature vector computed over
all the exemplars of that class, then we compute the feature
vector of the image we have to classify and finally assign
the class label by computing the distance between the fea-
ture vector of the image and all the average feature vectors
computed over all the exemplar sets. The image is classi-
fied as belonging to the nearest class based on the distance
computed between the average features vectors over all the
exemplars of that class and the features vector of the image.
Similarly to the construction of the exemplars set the fea-
ture vectors are extracted using the current feature extractor
of the net.

3.6. Results

Our implementation of iCaRL with the following param-
eters performed as seen in the fig:6:

Momentum = 0.9

WeightDecay = 10−5

BatchSize = 128

NumEpochs = 70

LRdrop1 = 49

LRdrop2 = 63

LR = 2.0

γ = 0.2

(1)

Figure 4. Confusion matrix of standard iCaRL method

3



Figure 5. Accuracy trend of the iCaRL standard implementation

4. Our experiments on iCaRL

By strictly following the iCaRL paper we did not seem
to be able to reach the results proposed: the overall trend
was comparable but we were a few percentage points below
in terms of accuracy, usually from the third batch onwards.
For this reason, we decided to bring some changes to the
standard implementation in order to try and reach the pa-
per’s results.
The first minor change we decided to make was relative to
the computation of the class mean feature vector: instead
of computing the class mean after having reduced and com-
puted the new exemplar sets, we compute the class mean for
new classes on all available training data when generating
the exemplar set for that class and we compute the mean of
existing exemplar sets before reducing them. This allows
us to have a better representation of each class’s mean by
using more data without having to store more.
We also managed to achieve a considerable improvement
(4%-5% in terms of accuracy from the second batch on) by
selecting random exemplars: even though the iCaRL paper
specifically states their herding method performs better than
random sampling, this was in contrast with our experimen-
tal results.
We attributed this behaviour to the fact that random sam-
pling should lead to more variance in a class representa-
tion, which could better describe the overall distribution of
a class especially when considering only a few exemplars
per set, as opposed to a more precise representation of the
training data, but a less precise one when comparing the ex-
emplars with our test data.
The strategies listed above were considered in place of
iCaRL’s approach for all our experiments and modifica-
tions.

4.1. iCaRL approach for the loss

The loss function used by iCaRL is a combination of two
contributions: a classification loss, focused on the predic-

Figure 6. Comparison between iCaRL standard and iCaRL with
our modifications

tion for the new classes, and a distillation loss, focused on
old classes scores obtained with the net at the previous step
and which prevents us to lose all the information learnt pre-
viously. In order to account both these two contributions
we first tried to follow the iCaRL’s implementation, using
PyTorch’s BCEWithLogitsLoss: such loss implementation
combines a sigmoid layer and the BCELoss in one single
class.

l(x, y) = L = {L1, ..., LT }

ln = −wn · [yn · logσ(xn) + (1− yn) · log(1− σ(xn))]

l(x, y) =

{
Mean(L) if reduction = ′mean′

Sum(L) if reduction = ′sum′

By using the BCELoss, each component’s loss is indipen-
det with respect to the other componets3: this characteristic
makes it a fitting choiche for multi-class classification prob-
lems. Such loss is called Binary Cross Entropy loss due
to the fact that, for every class, it sets up a binary classifi-
cation problem and then it sums up the losses over all the
different and independent binary problems. In our imple-
mentation we used as target of the BCEWithLogitsLoss,
for each training image, the concatenation of the scores ob-
tained on the old classes with the net at the previous step,
passed through a Sigmoid layer to comply with PyTorch’s
implementation, and the one-hot encoded labels. By using
this type of approach, instead of using two different losses
for classification and distillation, the contribution of every
class will be equally considered. As input for the BCELoss
we use the scores of the fully connected layer of the net we
are training, which is passed through a Sigmoid by the loss
itself.

3the sigmoid layer flattens the vector in the range (0,1) and it is ap-
plied independently to each element of the vector, so each output vector
component is indipendent from the others

4



4.2. Other approaches with the loss: Cross Entropy
& KLDivLoss

As a first different approach, we tried using two different
types of losses, the Cross Entropy Loss for classification
and the KLDivLoss for distillation. The Cross Entropy loss
measures the performances of a classification model, whose
output is the probability of the element to belong to a class.
The Cross Entropy Loss increases if the model produces a
small probability value for the actual label or a large proba-
bility value for the wrong labels.

loss(x, class) = −log ·

(
expx[class]∑

j expx[j]

)
=

= −x[class] + log

∑
j

expx[j]


Such approach penalizes predictions that are confident

and wrong. We apply the Cross Entropy loss on both im-
ages of the new classes and exemplars of previous analyzed
classes, providing as input the raw output of the net at the
current state and as target the labels of the images. The KL-
DivLoss is a measure of how one probability distribution is
different from another: this type of loss is a useful distance
measure for continuous distribution. In our experiments we
tried to apply this type of loss for the distillation component,
comparing the output of the net at the previous step passed
through a log sigmoid or log softmax with the scores on the
old classes obtained with the net at the current state passed
though a Sigmoid or Softmax4 respectively, on the new data
combined with exemplars.

l(x, y) = L = {l1, . . . , lN}

ln = yn · (log(yn)xn)

l(x, y) =

{
Mean(L) if reduction = ′mean′

Sum(L) if reduction = ′sum′

Using the Softmax function we noticed it was possible
to achieve better results: such occurence may be due to the
fact that we are considering a categorical multi-class classi-
fication problem.
Using the BCELoss we transform our problem into a binary
classification problem, One-vs-All: for that case we use a
Sigmoid because we do not care about our scores being a
cumulative probability distribution.

4it is not necessary to apply log sigmoid and log softmax due to the
fact that the KLDivLoss transform the probability values of the target au-
tomatically into log-probability values

Figure 7. Comparison between clf loss: CE, dst: KLDiv both with
Softamx and Sigmoid

4.3. Other approaches with the Loss: Cross En-
tropy & MSE

A different approach we considered was to use again
the Cross Entropy Loss as classification combined with the
MSE loss as distillation loss. The mean squared error loss
is the average of the squared distances between our target
variable and predicted values. The closer the loss is to zero,
the better the prediction is. We considered two approaches
with the MSE distillation:

• directly comparing the features of the images, ex-
tracted by the net at the previous step, with the features
extracted at the current step during the update repre-
sentation phase

• comparing the scores for each class, predicted by the
net at the previous step and the net at the current step.
Using KLDivLoss, we noticed that when comparing
the scores it’s better to pass them through a Softmax
layer rather than through a Sigmoid, so we decided to
do the same with MSE due their similar nature.

Observing our results, we notice that when using MSE
on the features the accuracy decreases a lot analyzing the
first batches of classes, but then in the end, on the last
batches of classes, the accuracy is slightly better than us-
ing MSE on the scores. The results we achieve applying
MSE to the scores are similar to the results achieved with
KLDivLoss used as distillation.

4.4. Other approaches with the loss: MSE & MSE

As a last approach with the losses we tried applying the
mean squared error loss as both classification and distilla-
tion loss. In order to use the MSE loss as a classification
loss we provide as input to the MSE the scores predicted by
the net at the current step and as target the one hot encoding
labels of the images we were analyzing. As for the distil-
lation loss, we compare the scores predicted by the net at

5



Figure 8. Comparison between clf loss: CE, dst: MSE both with
Features and Softmax

previous step and the scores predicted by the net at the cur-
rent step, passing both the scores through a Softmax layer.

Figure 9. Comparison losses

4.5. Classifiers

After implementing iCaRL as reported in the original pa-
per we proceeded by experimenting other classifying strate-
gies:

• the first classifier we implemented was the K-Nearest
Neighbors; KNN is a quite famous non-parametric
classifier where class membership is decided by a ma-
jority voting by theK neighbors of the new point. This
is done spatially representing data-points by means of
their features.
Due to the lack of such method in PyTorch we im-
plemented it by computing the distance between new
points and old data and then applying the class label of
the majority of its topK neighbors;

• we then proceeded by using a widely different and
more complex classifier: the MultiLayer Perceptron.
Such supervised algorithm is a feedforward neural net-
work composed of multiple perceptron layers. Each

Figure 10. Accuracy of KNN classifiers, depending on K

node of each layer, except for the input layer, is a neu-
ron that is triggered by an activation function. We
used the methods given by torch to implement a vanilla
MLP composed of three linear layers interspaced by
RELUs. We decided to use such simple implementa-
tion for computational purposes and to have a higher
degree of understanding of what was happening in-
side. We tried two different approaches: keeping the
same number of nodes between the linear layers, and
reducing the size of the hidden layer. Reducing the
number of intermediate nodes we hoped to better fil-
ter out noise from the input features, but the difference
between these two methods turned out to be negligible.

Figure 11. Accuracy of MLP classifiers

• finally, we modified the original implementation of the
nearest exemplar mean classifier by using a cosine sim-
ilarity as a measure. With such method we computed
an estimate proportional to the cosine between the an-
gles and used it to classify new data points with the
nearest mean of exemplars approach proposed previ-
ously.

similarity =
A ·B
‖A‖‖B‖

6



Figure 12. comparison between different classifiers

We see from the results in [fig:12] that the accuracy per-
formance is quite similar between different methods and
with the standard iCaRL implementation. The best per-
forming classifier is the one using the cosine similarity: its
affinity to the standard iCaRL implementation and the fact
that magniture difference between features are of minor im-
portance if compared to their direction. The second best
performing classifier was the KNN with K = 35: such
value appeared to be the one giving the best results while
higherKs probably brought to underfitting. As for the Mul-
tiLayer Perceptron, its worse performance may be caused
by our data distribution, which does not allow the MLP to
efficiently separate different classes.

4.6. Our proposals

Starting from the idea of better taking advantage of the
exemplars, we tried experimenting with some ideas on how
to preserve more features using the same number of exem-
plars or how to achieve similar results while using less. The
general idea behind the following studies is to combine im-
ages at the lowest level possible, which is pixel by pixel,
and then normalize according to the strategy we used.

4.6.1 Random images with same weight

We decided to do so by trying different strategies to gener-
ate synthetic data to obtain new, possibly more descriptive
samples.
We first approached this strategy by trying to generate new
synthetic data from random samples of each class and com-
puting their mean.

Due to our lack of knowledge of what images were the
most important and since the iCaRL implementation with
the best results seemed to be the one using random exem-
plars, we decided to proceed without giving a higher weight
to any particular image and sampling them completely at
random. The degradation in accuracy was appalling, some-
times reaching even lower results than the Learning without

Algorithm 1 Random Sampling Average Image Generation
CONSTRUCTEXEMPLARSETMEANIMAGESAVERAGE
input images X = {x1, . . . , xn} of class y
input m target number of average images
input r number of images to average

for k = 1, . . . ,m do
Z = {z1, . . . , zr} randomly sampled images from X
µk ← 1

r

∑r
i=1 zi

end for
M ← (µ1, . . . , µm)

output average image set M

Forgetting approach. After a checking the produced images
we noticed that such procedure was extremely naive: some
features could be observed, but the overall image was too
noisy to be representative of the class.

Figure 13. Sample image from class Snail

4.6.2 Clustered images with same weight

To find a way to condensate more information we con-
sequently tried leveraging the similarities between images
to create more meaningful data. At first many strategies
for dataset distillation were analyzed: the main issue was
to find a method to group images so that their combina-
tion wouldn’t become an indiscernible mixture: to do so,
given both our computational power and knowledge, we
decided to leverage the neural network we used for clas-
sification to extract features from the datapoints. We then
employed a simple clustering algorithm to divide them into

7



Figure 14. Sample image from class Snail

clusters based on their features distribution. By means of a
t-SNE[1] dimensionality reduction, we plotted the distribu-
tions of both images and features of some sample classes,
to get a general idea of the algorithm to use for clustering.
Most of the classes turned out to be fairly uniform globular
distributions when reduced with the t-SNE, hence we de-
cided to make some experiments with K-means and infer
what the best combination of parameters would be for our
scenario.
We opted for the K-means clustering algorithm because we
found it to be a good compromise between a fast and decent
starting point given our brief analysis on different classes
distributions.

Figure 15. t-SNE representation of class ’pear’.
* represents class mean, * represent centroids

Figure 16. t-SNE representation of class ’racoon’.
* represents class mean, * represent centroids

Algorithm 2 Clustered images with same weight CON-
STRUCTEXEMPLARSETMEANIMAGESAVERAGECLUS-
TER
input images X = {x1, . . . , xn} of class y
input m number of exemplars to generate
input l number of clusters
input f samples per cluster
C = {c1, . . . , cl} clusters of images from X
for k = 1, . . . ,m do
Z ← collection of randomly sampled images from C
clusters
µk ← 1

#Z

∑
i∈Z zi

end for
M ← (µ1, . . . , µm)

output average image set M for class y

We started by clustering images based on their feature
distribution with the idea to sample r random images from
each cluster and compute their mean [alg:2]. By using this
strategy we hoped to condensate more information in our
synthetic data, but ended up creating excessively noisy im-
ages. Just like the previous approach, the overall image was
poorly representative of its class.
At this point we started shifting from the idea of weight-
ing different images uniformly to create a new image, as we
could not seem to increase our accuracy score via this route.

4.6.3 Clustered images with distance-based weight

To try and solve this issue and give more importance to cer-
tain images, we opted to used a strategy where the sampled
images we use to generate our synthetic data contribute to
the image we are generating based on the distance of their
cluster’s centroid with respect to the class mean [alg:3]. By
doing this, our goal was to value more the contribution of
images whose features belong to a cluster closer to the class

8



mean, thus more representative of the distribution.
We tried three different strategies for sampling the images:

• from each cluster j, take k random images, compute
their mean and add them to the image we are generat-
ing weighing them by a factor
αi = (centroidi − class meani)2 .
By selecting some images from each cluster, we gener-
ate images with a contribution from each feature clus-
ter, which should prevent loss of information when se-
lecting exemplars.

• for each exemplar, select a random cluster j, take k
random images from cluster j and add them to the im-
age we are generating weighing them by a factor
αi = (featuresi − centroidi)2 .
By selecting images from the same cluster, we gen-
erate images as a linear combination of data-points
with similar features, considering as most important
the ones nearest to the centroid of the feature cluster.

• from each cluster j, take k random images, compute
their contribution by weighing them by a factor
αi = (featuresi − centroidi)2
and weight each cluster’s contribution by weighing
them by a factor
βi = (centroidi − class meani)2 .

Figure 17. Sample image from class Snail

Neither of these methods performs as expected. In the
first case we fall into the same issues we encountered in

Figure 18. Sample image from class Snail

Algorithm 3 Clustered images with distance-based
weight CONSTRUCTEXEMPLARSETMEANIMAGESCLUS-
TERSDISTANCE
input images X = {x1, . . . , xn} of class y
input m number of exemplars to generate
input r number of images to average per cluster
input l number of clusters
input f samples per cluster
C = {c1, . . . , cl} clusters from X
for k = 1, . . . ,m do
Zj ← collection of randomly sampled images from
cluster Cj

µk ← 1∑
α

∑
j∈C αj

1
f

∑
i∈Cj

zj with αi weight distance
of the i-th datapoint
end for
M ← (µ1, . . . , µm)

output average image set M for class y

the previous approach, as we did not generate particu-
larly meaningful images. All methods ended up produc-
ing monochrome images dominated by fuzzy noise. This
method would probably perform much better with classes
having images with very distinct features, but that’s not our
case.

4.6.4 Random images with unbalanced weights

At last, we decided to proceed with a hybrid approach: as
a matter of fact we needed to generate images that were di-
verse enough to be a decent summary of our class but that

9



contained a wide set of significant, and distinguishable, fea-
tures. To do so we borrowed the idea from our best per-
forming implementation of iCaRL and randomly sampled
images from the entire distribution of our class; the first im-
age is then weighted with a high coefficient, in our case
0.8, while the average of the other images would receive
an overall weight of 0.2: those two were then summed and
normalized. This strategy allows us to have samples whose
features are clearly distinguishable while also adding ad-
ditional information coming from random samples of the
class [alg:4]. This strategy yields extremely interesting re-
sults: we obtain similar performances to our initial random
exemplar sampling strategy, but when lowering the number
of total exemplars K we notice an improvement with re-
spect to the standard iCaRL’s strategy.
By using K = 2000 we maintain a comparable accuracy
with respect to iCaRL, falling under by at most 2% on the
last batches. This may be due to the fact that, when using a
considerable amount of exemplars per class, we do not gain
any advantage by using synthetic, noisier data and we end
up losing some accuracy because of that. Lowering the total
number of exemplarsK on the other hand, allows us to take
advantage of our more representative exemplars.
Already with K = 1500 we notice some appreciable differ-
ences between our method and iCaRL: when using less ex-
emplars we suffer far less from the loss of additional infor-
mation by compensating with more descriptive exemplars,
as we can clearly see by analysing the differences shown in
fig:21. By further experimenting on these scenarios, we no-
ticed the previous statement holds: reducing to K = 1000
follows a similar behaviour as the previous case with 1500
exemplars, whereas by taking this concept to the extreme
and considering only K = 100 exemplars better distin-
guishes between the two models, as seen in fig:23. When
using so few exemplars we have a noticeable difference in
performance starting from the first batches of 10 classes,
and using the fully connected layer for classification instead
of nearest mean of exemplars we notice further improve-
ment, especially because having so few exemplars does not
give an accurate enough representation when testing.

4.6.5 Clustered images with unbalanced weights

In order to generate a set of exemplars more representative
of the distribution of our training dataset, we tried employ-
ing a clustering technique. In particular our algorithm, after
having identified C clusters5 for each exemplar, randomly
selects one cluster and combine the nearest N image to the
centroid 6. Before the random selection of the N images

5similarly to previous strategies the clusters are computed in the feature
space of the images of a single class

6the distances between the images and the centroids are computed in
the feature space of the images of one class

Figure 19. Sample image from class Snail

Figure 20. Sample image from class Snail

inside the cluster we purge from the list of images the near-
est from the centroid: this is done in order not to to pick
the same image as the nearest image to the centroid of the
cluster, during the next iteration. The contribution of the
centroid and the average of the other images is then com-
bined in an unbalanced manner: the centroid will receive a
weight of 0.8 while the average of all the others a weight
of 0.2, or alternatively each one of the other images will

10



Figure 21. Accuracy of randomly sampled unbalanced exemplars
vs iCaRL

Figure 22. Accuracy of randomly sampled unbalanced exemplars
vs iCaRL

Figure 23. Accuracy of randomly sampled unbalanced exemplars
vs iCaRL

receive a weight of 0.2
N . Observing our results we notice

that this technique does not provide an improvement in ac-
curacy. Such curious occurrence probably happens due to
the distribution of the data of the CIFAR100 dataset: our
clustering may not be that representative of the differences
between the features in each class, thus selecting images by
cluster does not translate in sampling the most significative

Algorithm 4 Random images with unbalanced weights
CONSTRUCTEXEMPLARSETMEANIMAGESUNBAL-
ANCED
input images X = {x1, . . . , xn} of class y
input m number of exemplars to generate
input s randomly samples per exemplar
Z ← X
for k = 1, . . . ,m do
C = {c1, . . . , cs} sampled images from Z
Z ← Z \ {c1}
µk ← 0.8 · c1 + 0.2 1

s−1 ·
∑s
i=2 ci

end for
M ← (µ1, . . . , µm)

output average image set M

images of the class. Using this technique on a larger dataset
with a different distribution might lead to better accuracy
results.
We tried plotting our data by reducing its features with a
t-SNE to try and gather more insight on the distribution of
each class. Using a t-SNE allows us to better identify differ-
ent clusters, while preserving local similarities. The t-SNE
representation accentuates the distances between what we
end up considering clusters, but in our case they seem to
be relatively close to each other, which probably means all
images of the same class have very similar features. This
makes sense since we are considering rather few images of
the same class (500 per class).

Figure 24. Sample image from class Snail

11



Figure 25. Sample image from class Snail

Figure 26. Accuracy of randomly sampled unbalanced exemplars
vs cluster approach

4.6.6 Clustered images with unbalanced weights with
separate feature extractor

To try and improve our results obtained with the cluster-
ing approach, we introduced a separate CNN of the same
type we have used for iCaRL, which we train only with
the batch of new classes, to obtain a better representation
for new classes features without the influence of exem-
plars. This approach did not translate into an improve-
ment in performance for the cases with very few exemplars
(e.g.K = 100), as expected, and it produced negligible im-
provements for other cases, which does not justify the ex-
treme time increment in the training phase.

Algorithm 5 Clustered images with unbalanced weights
CONSTRUCTEXEMPLARSETMEANIMAGESCLUSTER-
SUNBALANCED
input images X = {x1, . . . , xn} of class y
input m number of exemplars to generate
input r number of images to average per cluster
input l number of clusters
input f samples per cluster

for k = 1, . . . , l do
C = {c1, . . . , cl} clusters from X

end for
for k = 1, . . . ,m do
z1 ← image closest to centroid of random cluster cj
cj ←cj\{z1}
{z2, . . . , zf} ← randomly sampled images from cj
µk ← 0.8 · z1 + 0.2 1

f−1 ·
∑f
i=2 zi

end for
M ← (µ1, . . . , µm)

output average image set M

5. Conclusions and possible future improve-
ments

Our approaches for synthetic data generation produced
some interesting results: even though we used some triv-
ial techniques we were able to bring improvements in some
scenarios, which leads us to think we could further increase
the performances.
An interesting idea would be to employ dataset distillation
[5] to try and generate even more representative synthetic
data, so that we could further increase what we obtained by
simply combining images on a pixel level.
Another fascinating strategy that could be worth analyzing
is a generative approach by means of a Generative Adver-
sarial Network [2], to create exemplars and avoid breaking
the memory constraints we have on how many old samples
we can keep.

12



References
[1] D. M. Chan, R. Rao, F. Huang, and J. F. Canny. t-sne-cuda:

Gpu-accelerated t-sne and its applications to modern data.
CoRR, abs/1807.11824, 2018.

[2] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative Adversarial Networks. arXiv e-prints, page
arXiv:1406.2661, June 2014.

[3] Z. Li and D. Hoiem. Learning without forgetting. CoRR,
abs/1606.09282, 2016.

[4] S. Rebuffi, A. Kolesnikov, and C. H. Lampert. icarl: In-
cremental classifier and representation learning. CoRR,
abs/1611.07725, 2016.

[5] B. Zhao, K. R. Mopuri, and H. Bilen. Dataset condensation
with gradient matching, 2020.

13


